

Probes of Self-Interacting Dark Matter and Update on Rubin LSST Tesla Jeltema

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

Self-Interacting Dark Matter

Is dark matter actually collisionless?

- Would lead to dark matter halos which are rounder and less dense in the middle.
- Can also lead to gravothermal core-collapse!
- Possible solution to small-scale tension e.g. core-cusp, diversity at dwarf galaxy scales

Diversity of galaxy/dwarf rotation curves and densities imply

 $\sigma/m > 3 - 20 \text{ cm}^2/\text{g}$

with some fraction in core-collapse phase (e.g. Roberts+2024)

- Scattering rate scales with density SIDM may affect cores but outer structure the same as CDM
- Cross section could be velocity dependent (e.g. smaller for clusters than dwarfs)

Self-Interacting Dark Matter

Merging clusters

Limits from a variety of probes imply

$\sigma/m < 0.1 - 1 \text{ cm}^2/\text{g}$

Self-Interacting Dark Matter

- Strongest constraints at cluster scales
- Implies a needed velocity-dependent cross-section to explain galaxy and dwarf scale observations
- Natural in many SIDM models, e.g. light mediator

- SIDM halos are predicted to be rounder in the inner regions
- > X-ray gas in hydrostatic equilibrium constrains shape of DM halo
- > NCG 720: isolated elliptical galaxy, measure $\varepsilon \sim 0.37$ (Buote+2002)

Alex McDaniel

Measured the shapes of 11 relaxed, isolated ellipticals with XMM (9 also with Chandra)

 $\succ \epsilon$ = 0.2-0.5 with significant scatter, consistent with mild self-interaction though cannot rule out CDM

McDaniel et al. 2021

- In SIDM, the formation of cores in clusters means the central galaxies orbit over large distances
- Kim et al. 2016 found BCG oscillations on long lived orbits lasting several Gyrs
- Longer lasting signature than merger offsets (e.g. Bullet cluster)
- Including baryons Harvey et al. 2019 found smaller, but measurable offsets of 5-10 kpc even in relaxed clusters

Central Galaxy Offsets

Measured the offset of the central galaxy from the X-ray center for 23 relaxed, X-ray bright DES and SDSS clusters

Dane Cross

Gray Thoron

- Non-zero offsets larger than positional and statistical uncertainties for most of the sample
- Consistent with mild self interaction of ~ 1 cm²/g

Cross, Thoron+ 2023

Cluster Strong Lensing

Cluster strong lensing: Cored or cuspy?

- Identified 189 cluster strong lenses in DES Y3 (O'Donnell+ 2022)
- Sample of ~20 relaxed clusters with prominent, symmetric arcs and HST imaging
- Conducting spectroscopic and X-ray follow up, adding systems with HST GAP program

Jack O'Donnell

Jack O'Donnell

Will model density profile from 2 – 500 kpc scales including the contributions from baryons

Central and member galaxy dynamics

Strong lensing X-ray

Use resolved kinematics of central galaxy plus strong lensing

200

100

300 400 500

Jack O'Donnell

Will model density profile from 2 – 500 kpc scales including the contributions from baryons

Use a fully consistent mass modeling, directly sampling the SIDM parameters and computing the strong lens observables from the predicted density profile plus baryonic components

- Using PyAutoLens (Nightingale+ 2021) edited for cluster strong lens modeling
- Mass model:
 - Isothermal Jeans model isothermal within core + NFW outer halo (decomposed as sum of CSEs)
 - BCG stellar mass
 - Cluster member galaxies scaled by Faber-Jackson relation

Dhruv Aldas Emma Strickland

BCG Kinematics

- IFU data used to model 2D stellar velocity dispersion
- Stellar kinematics modeled with Jeans Anisotropic Modelling (JAM) method (Cappellari 2008)
- HST 2D light profile constrains stellar mass

MUSE spatially

Stellar dispersion distribution

Systematics tests

108 set ups varying:

- Wavelength range
- Background model
- Template library
- Dust model

→ Systematics subdominant to statistical uncertainties

Jack O'Donnell

Cluster Substructure

- Cluster member galaxy masses using cluster Faber-Jackson relation
- MUSE data used to measure member galaxy stellar velocity dispersions

Abigail Flowers

Also get velocity dispersion of galaxies within the cluster

Example Constraints

Very small/negligible interaction cross section for this cluster

- > We find populations of high-z (z>6) supermassive black holes $(M_{BH}>10^9)$ whose formation so early is difficult to explain.
- If a fraction of the dark matter is ultra-strongly interacting, these black holes can be seeded by core collapse (e.g. Pollack+2014)

Grant Roberts

 We find constraints on the DM fraction versus interaction cross section for a sample of z = 6-10 quasars

Rubin Observatory Legacy Survey of Space and Time

- The 10-year Rubin Observatory Legacy Survey of Space and Time (LSST) will observe half of the sky and will:
 - Record 37 billion stars and galaxies
 - 10 million alerts
 - 20 TB of data, every night!

Rubin LSST

LSST Camera

- 3.5 deg diam FOV
- 3.2 gigapixels
- 189 4k X 4k CCDs, ugrizy

Simonyi Survey Telescope

- 8.4-m primary mirror
- Three mirror design → good imaging over wide FOV

Recent Milestones

LSST Camera arrived at Cerro Pachón on May 16, 2024

Olivier Bonin/SLAC

8.4-meter primary/tertiary mirror was coated with silver April 27, 2024

RubinObs/NSF/AURA/T. Vučina

Secondary mirror installed July 24, 2024

Rubin Observatory/NSF/AURA/F. Munoz Arancibia

Survey Start Next Year!!

- Commissioning with ComCam (9 CCDs) this Fall
- LSST Cam on telescope ~ December/January
- Rubin first light and science verification ~ Spring Summer 2025

20

Survey Strategy

80

60

100 120

MV/icDerSeason season 2 (#)

140

160 180

200

Baseline Survey Strategy designed to achieve the core science goals over 10 years

Wide-Fast-Deep survey:

- approximately 18000 deg²
- median 800 visits per field in 10 years
 ~ 3 day cadence (time between visits)
- same-night same-field re-visit "pairs"
- Rolling cadence reduces time between visits with same filter

Deep Drilling Fields: 5 fields, single pointings with ~20k visits, 40k for COSMOS and several sequences of visits within 1 night

Mini-Surveys + ToO's

See survey-strategy.lsst.io

Rubin LSST Science Collaborations

https://lsstdiscoveryalliance.org/lsst-science-collaborations/

Dark Energy Science Collaboration

Dark Energy Science Collaboration

- Scientific aim: Explore the physics of the dark universe including dark energy, dark matter, neutrinos and inflation
- Our approach: Combine cosmological probes: clusters of galaxies, large-scale structure, supernovae, weak lensing and strong lensing (Science Overview Document)

1,250+ members, 250+ full members (with voting rights on policies, etc.) For DESC membership <u>apply here</u>

Spokesperson team: Renée Hložek (U. Toronto) Tesla Jeltema (UC Santa Cruz)

DESC Management led by

Working groups and topical teams to build pipelines and perform analysis

Dark Energy with LSST

 Example of anticipated systematics in 3x2pt analysis

 Dark energy constraints with 10-year LSST (an enormous amount of work to get to this plot)

Dark Matter with LSST

LSST Dark Matter Group 2019, arXiv:1902.01055

- ➤ Galaxy shapes and central galaxy offsets consistent with mild dark matter self interaction of σ ≤ 1 cm²/g
- Strong constraints coming from cluster strong lensing plus galaxy stellar dynamics
- LSST is almost here!!

